
MS&E 345
Final Project Report

Pricing High Dimensional American Options

Ajaykumar Rajasekharan (05335598)

March 17, 2008

1 Introduction

Methods for pricing American options have been increasingly important with the development
of more and more complex contracts, for eg. valuations of basket options, swaptions etc. In high
dimensions the grid techniques (such as finite difference) becomes intractable as they encounter
the curse of dimensionality. Consequently, Monte Carlo techniques have become attractive and
a lot of techniques have been developed [1, 2, 3, 4, 5].

This project intends to review and implement two different approaches to price the Ameri-
can options (in high dimensions), namely the Least-Squares Method (LSM) of of Longstaff &
Schwartz [1] and the Irregular Grid Method (IGM) in Berridge & Schumacher [4, 5], and finally
compare their performance on a benchmark problem of Geometric Average Option described
in Berridge & Schumacher [5].

2 General Summary of Methods

There are in general two different types of methods used to value american options, namely the
traditional methods and simulation based methods.

2.1 Traditional Methods

The following are the two most commonly used traditional methods

• Lattice Methods (e.g. Binomial Tree) : These methods use a dynamic programming by
working up backwards in time by discounting backwards.

• Finite Difference, Finite Element etc.. : These methods essentially solve the semi-discrete
version (discretize separately in space and time – method of lines) of the following com-
plementarity problem for the price of the derivative v

∂v

∂t
+ Lv ≤ 0

v − ψ ≥ 0

1

(
∂v

∂t
+ Lv)′(v − ψ) = 0 (1)

for (x, s) ∈ RN × [t, T] with terminal condition v(., T) = ψ(., T). In the above equation,
L is the generator (Black-Scholes pde) and ψ is the payoff function ((K−S)+ in the case
of standard American Put).

Both these methods are good for early exercise computations but are limited by the number
of stochastic factors O(Nd), where, N is the number of grids (curse of dimensionality).

2.2 Simulation (Monte-Carlo) Based Methods

The main features of the Monte-Carlo approach can be summarized as follows:

• Requires to solve a dynamic optimization problem by dynamic programming. For an
American option, this implies that the optimal exercise strategy is determined by choosing
between the current exercise value and the conditional expectation of the payoff from
continuing to keep the option alive. Hence, for an intrinsic value Ii = max{K − Si, 0} of
an American Put, the price at time Vi(Si) can be computed as

Vi(Si) = max
{
Ii(Si),E

Q
i

[
e−r·∆tVi+1(Si+1)|Si

]}
(2)

where, Si is the price of the underlying stock Si, and the expectation is with respect to
the risk-neutral measure Q.

• The direct generalization of the above is not feasible for multiple stochastic factors,
due to an exponential increase in the number of state variables (curse of dimension-
ality). Hence one needs to find a good approximation of the expected value function

EQ
i

[
e−r·∆tVi+1(Si+1)|Si

]
, which always provides a lower bound because of the discretiza-

tion in time (i.e. not computing in continuous time).

3 Least-Squares Approach of Longstaff & Schwartz

Main Idea : In their approach, Longstaff & Schwartz estimate the conditional expectation

EQ
i

[
e−r·∆tVi+1(Si+1)|Si

]
described in the previous section by first regressing the subsequent

realized cash flows from continuation on a set of basis functions of the values of the relevant
state variables, for e.g.

EQ
i

[
e−r·∆tVi+1(Si+1)|Si

]
≈ a1 + a2Si + a3S

2
i (3)

Then they use the fitted value as an efficient unbiased estimate of the conditional expectation
function to accurately estimate the optimal stopping rule for the option.

3.1 Algorithm

1. Generate multi-dimensional correlated Geometric Brownian Motion sample paths with
values at each time discretization 1, ..., n

2

2. At each time slice moving backwards from n− 1, n− 2, ..., 1

• Select all the sample paths that are in the money for continuation

• Regress the payoff of continuation with the present values of the stock to obtain the
conditional expectation function

• Use the conditional expectation function to obtain the expected continuation value

• If the present payoff (intrinsic value) is more than then expected continuation, the
exercise the option, else wait further to exercise

3. After the above step, one obtains information regarding time to exercise the option for
each sample path. Use this information and discount the payoff value for each sample
path to the starting point using each of their corresponding time of exercise

4. Average the time 0 value for each sample path to obtain the American Put price

3.2 Advantages and Disadvantages of using this Method

The following are the advantages and disadvantages of the Least-Squares Method.

• Advantages

– Quick solution obtainable (runs in MATLAB with 100000 sample paths, 50 time
slices and 5 dimensions in less than 5 minutes)

– Easy to code

• Disadvantages

– Choice of basis function in the regression is tricky

– Can get into numerical issues with singularity while solving the least-squares problem

– Gives always a lower bound for the American Put value. Hence one needs to com-
plement this value with the dual Monte-Carlo approach of L.C.G. Rogers [3] that
gives and upper bound for the put value. This approach is based on simulating the
paths of the options payoff by judiciously choosing a Lagrangian martingale M(s).
Taking the pathwise maximum of the payoff less the martingale provides the upper
bound for the price of the option Vi(Si) i.e.

Vi(Si) = min
{
Ii(Si),E

Q
i

[
max

(
e−r·∆tVi+1(Si+1)−M(s)

)
|Si

]}
4 Irregular Grid Method of Berridge & Schumacher

Main Idea : This method is a sandwitch between the sampling methods and the finite dif-
ference method for valuing American Put options. The discretization of the state space if first
performed using Quasi Monte Carlo (QMC) trials with respect to the transition density of the
process at expiry. The inifinitesimal generator matrix is then used as an approximation to the

3

partial differential operator (PDO) on this grid, which is generated using some local consistency
conditions. These conditions ensure that the approximating Markov chain has a local mean
and variance that match those of the continuous process.

So, this method involves solving Eq. (1) in a semi-discrete fashion by approximating the
generator L with and approximate generator A on thre state space using grid X without doing
finite difference. After this approximation the complementarity problem reduces to

dv

dt
+ Av ≤ 0

v − ψ ≥ 0

(
dv

dt
+ Av)′(v − ψ) = 0 (4)

The matrix A is then approximated by solving the local consistency conditions.

4.1 Generating Irregular Grid (X)

The dynamics of the stock process S which is a correlated Brownian Motion, in log coordinates
X = log(S) is given by

dX =
(
r− 1

2
diag(Σ)

)
dt+ R′dW (5)

where, Σ is the covariance matrix, R is the first part of the Cholseky decomposition and r is
the risk-free interest rate.

The gird is generated to be centred about xt +
(
r − 1

2
diag(Σ)

)
(T − t). Hence, one way to

generate this grid is to choose a grid density that is normal with respective mean and covari-
ance matrix give by

µg = xt +
[
r− 1

2
diag(Σ)

]
(T − t) (6)

Σg = αΣ(T − t) (7)

where, the parameter α is at least 1 for the grid ot be well adapted. The ith grid point is hence
given by

xi = µg +R′
g

(
Ψ−1(hi,1).....Ψ

−1(hi,N)
)′

(8)

where, hi,i is the quasi random Halton sequence. For multiple runs, this quasi random sequence
is randomized using

Hj = {hi + Uj mod 1} (9)

where, Uj are independent uniform random vectors on [0, 1]N and x mod 1 denotes the fractional
part of x. A two-dimensional grid generated using the above procedure is shown in Fig. 1

4

Figure 1: A QMC irregular grid in 2-dimensions (log coordinates)

4.2 Generation of Infinitesimal Generator (A)

The approximate infinitesimal generator matrix A can be computed by solving for the consis-
tency conditions at each grid node i namely

max fj · ai,j s.t. (10)

Σ(xi) =
n∑

j=1,j 6=i

(xj − xi)(xj − xi)
′ai,j

µRN =
n∑

j=1,j 6=i

(xj − xi)ai,j

1 =
n∑

j=1,j 6=i

ai,j

ai,j ≥ 0, i 6= j

ai,i = −
n∑

j 6=i

ai,j

where, ai,j is the (i, j)th entry of of the infinitesimal generator A. The above consistency
conditions are just the method of moments (MOM) matches for the first and second moments
of the continuous process. The objective function fj is chosen as a distance function so as to
ensure that the maximum probability of transition for a node i is to its nearby neighbors.

4.3 Boundary Condition

There are points in the above grid where the linear program (LP) for the local consistency
conditions is not feasible. These points can be interpreted as implied boundary points, which
mean that it is hard to transition from these points away to other points. Hence they are best
modeled using absorbing boundary conditions. Another, interpretation, could be that these
points are way in the tails of the distribution, so they are less likely to occur, and can be in

5

principle eliminated from the grid. But, handling these points is very important step for the
method to work.

4.4 Algorithm

• Choose grid size n

• Generate a constant Quasi Monte-Carlo QMC grid χ

• Compute generator matrix A

• Choose a time integrator (used second order implicit Crank-Nicholson)

• Solve the linear complementarity problem

4.5 Advantages and Disadvantages of using this Method

• Advantages

– Since this method is a semi-discrete (finite-difference) style method, convergence is
obtained by increasing the number of grid points and by increasing the order of the
time-integration

– This method uses an optimum grid positioning unlike finite difference which uses a
constant box grid

– Re usability of the infinitesimal generator A is a major highlight of this method

• Disadvantages

– To obtain a constant grid, the grid is constructed with the probability distribution
at the final time step. This is questionable as the state-space represented by the grid
does not involve all the transitioning states at all time steps

– Handling boundary conditions (i.e. points where no feasible solution to the LP) is
not clear. Also one has to solve the LP to find out the infeasible points, and hence
cannot be determined before hand.

5 Numerical Experiments

Both the Least-Square’s Method (LSM) and the Irregular Grid Method (IGM) have been
implemented in MATLAB (see code attached), and were used to price of a Geometric Average
American Put benchmark test case described in the next subsection. In this section the results
obtained from both methods are presented and then compared with the results presented in
Berridge & Schumacher [5].

6

5.1 Benchmark - Geometric Average Option

A geometric average put option written on d assets with the following payoff function is con-
sidered here

ψ(s) =
(
K −

(∏
si

)1/d)+

(11)

This option is equivalent to a standard put option on an asset with starting value expX0,

strike price K, risk free rate r and continuous dividend stream δ =
1

2

(1

d

∑
σ2

i − σ2
)

The values of various parameters in the simulation are Si = 40 for all i, K = 40, r = 0.06,
σi = 0.2 and correlation coefficient is ρij = 0.25 for i 6= j.

5.2 Results

The following table summarizes the results obtained by using both the LSM and IGM to solve
the Geometric Average Option. For the LSM a total number of 100, 000 sample paths were
generated and 50 time slices were used, while for the IGM, 10 separate grids with a total number
of 2000 randomized QMC grid points were generated and then the results averaged.

Table 1: American Put Sol
Dimension Exact Sol Longstaff-Schwartz Berridge-Schumacher

2 1.7787 1.6051 —-
(0.0122)

3 1.5597 1.3903 1.6412
(0.0106) (0.0072)

4 1.4392 1.2721 1.4067
(0.0098) (0.0255)

5 1.3625 1.1946 1.1305
(0.0093) (0.0397)

The values in the bracket in the table are the 95% confidence intervals. Its seen from the
table that the LSM approaches the optimal solution described in the paper from below, but is
not up to a good level of accuracy. With the IGM, no correct convergence pattern is observed,
although the trend in the solution is achieved. This could be due to incorrect solution of the
LP or due to incorrect handling of the implied boundary points.

6 Conclusion

The following are the important conclusions of this report.

• The project looked at using two methods for pricing high dimensional American Options,
namely – Least-Squares Method and the Irregular Grid Method

• Both have advantages and disadvantages as described in the previous sections

7

• The methods were coded and applied to obtain prices for a geometric average option. It
was observed that the IGM didn’t give accurate results and had no convergence pattern,
with can be due to the non-optimal solution of LP with MATLAB or some innate features
in the grid generation process or incorrect handling of boundary conditions

References

[1] F. A. Longstaff and E. S. Schwartz, Valuing American Option by Simulation : A
Simple Least Squares Approach, Review of Financial Studies, 14(1), 113-147, 2001. 1990.

[2] M. Broadie and P. Glasserman, A Stochastic Mesh Method for Pricing High-
Dimensional American Options, Journal of Computational Finance, 7(4), 39-88, 2001.

[3] L.C.R. Rogers, Monte Carlo Valuation of American Options, Mathematical Finance, 12,
271-286, 2002.

[4] S. J. Berridge and J.M. Schumacher, An Irregular Grid Approach for pricing High-
Dimensional American Options, CentER Discussion Paper, 99, 2002.

[5] S. J. Berridge and J.M. Schumacher, Pricing High-Dimensional American Options
using Local Consistency Conditions, CentER Discussion Paper No. 2004-19. Available at
SSRN: http://ssrn.com/abstract=557745 2004.

8

Matlab Codes

Longstaff-Schwartz Least Squares Method

% This is a higher dimensional modification of the 1-dimensional code

% presented in P. Brandimarte (Numerical Methods in Finance), 2002

NDIMS = 5; % No of dimensions

NRepl = 100000; % No of sample paths

NSteps = 50; % No of time slices

randn(’state’,0);

% problem parameters

S0 = 40; % spot value

sigma = 0.25 *0.04* ones(NDIMS,NDIMS); % variance matrix

for i = 1:NDIMS

sigma(i,i) = 0.04;

end

r = 0.06; % interest rate

T = 1; % maturity

t = 0;

dt = (T-t)/NSteps; % time step

X = 40; % strike

% discount rates over different time intervals

discountVet = exp(-r*dt*(1:NSteps))’;

% regression parameters (cubic function)

a = zeros(4,1);

% generate sample paths

SPaths = GBMMUL(NDIMS,NSteps,S0,r,sigma,T,NRepl);

SPaths(:,1,:) = []; % get rid of starting prices

%

CashFlows = max(0, X - prod(SPaths(:,NSteps,:),3).^(1/NDIMS));

% first set exercise time at expiration for convenience

ExerciseTime = NSteps*ones(NRepl,1);

for step = NSteps-1:-1:1

9

InMoney = find((prod(SPaths(:,step,:),3).^(1/NDIMS)) < X);

XData = prod(SPaths(InMoney,step,:),3).^(1/NDIMS);

RegrMat = [ones(length(XData),1), XData, XData.^2, XData.^3];

YData = CashFlows(InMoney) .* discountVet(ExerciseTime(InMoney) - step);

a = RegrMat \ YData;

IntrinsicValue = X - XData;

ContinuationValue = RegrMat * a;

Exercise = find(IntrinsicValue > ContinuationValue);

k = InMoney(Exercise);

CashFlows(k) = IntrinsicValue(Exercise);

ExerciseTime(k) = step;

end % for

price = mean(CashFlows.*discountVet(ExerciseTime))

error = 1.96 * std(CashFlows.*discountVet(ExerciseTime)) / sqrt(NRepl)

--

% This routine generates NRepl samples of correlated multidimensional

% geometric brownian motions (GBM)

function [S] = GBMMUL(dim,p,S0,r,Sigma,T,NRepl)

dt = T/p;

A = chol(Sigma)’;

aa(1,1,:) = (r-(diag(Sigma).^2)/2)*dt;

S = repmat(aa,[NRepl p 1]) + reshape((A*randn(dim,NRepl*p)*sqrt(dt))’,NRepl,p,dim);

S = S0*exp(cumsum(S,2));

S = [S0*ones(NRepl,1,dim) S];

--

10

Berridge-Schumacher Irregular Grid Method

% This is the driver routine for the American Put pricing by computing the

% approximate infinitesimal generator

rand(’state’,1);

p = 10; % No of QMC grids

for kkk = 1:p

NUMPTS = 2000;

NDIMS = 5;

NTIME = 50;

x_t = log(40) * ones(NDIMS,1);

alpha = 1;

sigma = 0.25 * 0.04 * ones(NDIMS,NDIMS);

for i = 1:NDIMS

sigma(i,i) = 0.04;

end

r = 0.06 * ones(NDIMS,1);

q = 0 * ones(NDIMS,1);

T = 1;

t = 0;

dt = (T-t)/NTIME;

K = 40;

% Step-1 : Create the irregular grid

G = irrgrid(x_t,r,q,sigma,T,t,alpha,NUMPTS,NDIMS); % S in log coordinates

% Step-2 : Generating the Infinitesimal Generator P

generateInfinitesimalGen(G,r,sigma,NUMPTS,NDIMS);

% Step-3 : Solving complementarity problem to determine price

load ’delPlace.mat’

load ’infGen.mat’

% Payoff

GG = max(K - prod(exp(G)).^(1/NDIMS),0)’;

% Treating boundary conditions

GG(II) = [];

P(II,:) = [];

P(:,II) = [];

NUMPTS = NUMPTS - length(II);

11

for ii = 1:NUMPTS

P(ii,ii) = P(ii,ii) - sum(P(ii,:));

end

% European pricing (Crank-Nicholson time integration)

v = GG;

Iden = sparse(NUMPTS,NUMPTS);

Iden = Iden + (1/dt) * eye(NUMPTS);

P = 0.5*P;

for i = NTIME-1:-1:1

v = (Iden-P)\((Iden+P)*v);

end

eursuper(kkk) = mean(v);

% American pricing (Crank-Nicholson time integration)

v = GG;

Iden = sparse(NUMPTS,NUMPTS);

Iden = Iden + (1/dt) * eye(NUMPTS);

P = 0.5*P;

for j = 1:NTIME

v = (Iden-P)\((Iden+P)*v);

v = max(GG, v);

end

amsuper(kkk) = mean(v);

end

disp(’european price and confidence interval’)

mean(eursuper)

1.96 * std(eursuper) / sqrt(p)

disp(’american price and confidence interval’)

mean(amsuper)

1.96 * std(amsuper) / sqrt(p)

--

% This routine creates the QMC irregular grid

function G = irrgrid(x_t,r,q,sigma,T,t,alpha,NUMPTS,NDIMS)

mu_g = x_t + (r - q - 0.5*diag(sigma))*(T-t);

sigma_g = alpha * sigma * (T-t);

H = halton(NUMPTS, NDIMS);

12

H = mod(H+repmat(rand(1, NDIMS),NUMPTS,1),1); % Cranley-Peterson Rotations

R_g = chol(sigma_g)’;

for i = 1:NUMPTS

G(:,i) = mu_g + R_g * (icdf(’normal’,H(i,:),0,1))’;

end

--

% The routine computes the approximate infinitesimal generator matrix P by

% solving the consitency conditions LP

function [] = generateInfinitesimalGen(G,r,sigma,NUMPTS,NDIMS)

P = sparse(NUMPTS,NUMPTS);

eta_d = 0.5*NDIMS*(NDIMS+3)+1;

noPts = 20*eta_d; % no of points used for linear program

kk = 1;

for i = 1:NUMPTS

% sets up constraints, objective function and

% solves the LP program using linprog

ndist = sum((G - repmat(G(:,i),1,NUMPTS)).^2).^(1/2);

[Y,I] = sort(ndist);

clear Y

A = ones(1,noPts);

B = G(:,I(1:noPts)) - repmat(G(:,i),1,noPts);

for j = 1:noPts

S(:,:,j) = (G(:,I(j))-G(:,i))*(G(:,I(j))-G(:,i))’;

dist(j,1) = norm(G(:,I(j))-G(:,i));

end

l = 1;

for j = 1:NDIMS

for k = 1:NDIMS

C(l,:) = S(k,j,:);

l = l+1;

end

end

13

a = 0;

b = (r - 0.5*diag(sigma));

c = reshape(sigma,NDIMS*NDIMS,1);

AA = [];

bb = [];

Aeq = [A; B; C];

beq = [a; b; c];

LB = zeros(noPts,1);

LB(1) = -Inf;

UB = [];

sdist = sort(dist);

for j = 1:noPts

f(j,1) = find(sdist == dist(j));

end

f = f.^3;

pij = linprog(f,AA,bb,Aeq,beq,LB,UB);

P(i,I(1:noPts)) = pij;

if(abs(sum(pij)) > 0.000000001)

II(kk) = i; % absorbing bc for grid points that give rise to

% infeasible optimization problem

kk = kk+1;

end

end

% Saving the matrix P and absorbing bc info II

save infGen P

save delPlace II

--

% This routine generates the Halton Sequence (obtained from MATLAB repository)

% http://people.scs.fsu.edu/~burkardt/m_src/halton/halton.html

function H = halton(NUMPTS,NDIMS);

if (NDIMS < 12)

14

P = [2 3 5 7 11 13 17 19 23 29 31];

else

P = primes(1.3*NDIMS*log(NDIMS));

P = P(1:NDIMS);

end

if isequal(size(NUMPTS),[1 1])

int_pts = [1:NUMPTS];

else %User has put in the points to sample.

int_pts = NUMPTS;

NUMPTS = length(int_pts);

end

H = zeros(NUMPTS,NDIMS);

for i = 1:NDIMS %Generate the components for each dimension.

%V = fliplr(dec2base(int_pts,P(i)));

%V = V-’0’; %Converts string to a matrix of doubles with correct numeric

%values.

V = fliplr(dec2bigbase(int_pts,P(i)));

pows = -repmat([1:size(V,2)],size(V,1),1);

H(:,i) = sum(V.*(P(i).^pows),2);

end

function s = dec2bigbase(d,base,n)

error(nargchk(2,3,nargin));

if size(d,2) ~= 1, d = d(:); end

base = floor(base);

if base < 2, error(’B must be greater than 1.’); end

if base == 2,

[x,nreq] = log2(max(d));

else

nreq = ceil(log2(max(d) + 1)/log2(base));

end

if nargin == 3

nreq = max(nreq,1);

n = max(n,nreq);

last = n - nreq + 1;

else

n = max(nreq,1);

15

last = 1;

end

s(:,n) = rem(d,base);

while n ~= last

n = n - 1;

d = floor(d/base);

s(:,n) = rem(d,base);

end

--

16

% This is the driver routine for the American Put pricing by computing the

% probability transition matrix

clear all;

close all;

NUMPTS = 2000;

NDIMS = 5;

NTIME = 1000;

x_t = log(40) * ones(NDIMS,1);

alpha = 1.5;

sigma = 0.25 * 0.04 * ones(NDIMS,NDIMS);

for i = 1:NDIMS

sigma(i,i) = 0.04;

end

r = 0.06 * ones(NDIMS,1);

q = 0 * ones(NDIMS,1);

T = 1;

t = 0;

dt = (T-t)/NTIME;

K = 40;

% Step-1 : Create the irregular grid

G = irrgrid(x_t,r,q,sigma,T,t,alpha,NUMPTS,NDIMS);

figure(1);

plot(G(1,:),G(2,:),’.’)

% Step-2 : Generating the P matrix by solving a Linear Program

generateTransitionMatrix(G,r,sigma,dt,NUMPTS,NDIMS);

% Step-3 : Backward dynamic programing to find price

load ’transmatrix.mat’

Payoff = max(K - prod(exp(G)).^(1/NDIMS),0)’;

disfactor = exp(-r(1)*dt);

v = Payoff;

for i = NTIME-1:-1:1

17

v = max(Payoff, disfactor*P*v);

end

american = mean(v)

payoff = mean(Payoff)

--

% The routine computes the transition probability matrix P by

% solving the consitency conditions LP

function [] = generateTransitionMatrix(G,r,sigma,dt,NUMPTS,NDIMS)

P = sparse(NUMPTS,NUMPTS);

eta_d = 0.5*NDIMS*(NDIMS+3)+1;

noPts = 20*eta_d; % no of points used for linear program

kk = 1;

for i = 1:NUMPTS

% sets up constraints, objective function and

% solves the LP program using linprog

ndist = sum((G - repmat(G(:,i),1,NUMPTS)).^2).^(1/2);

[Y,I] = sort(ndist);

clear Y

A = ones(1,noPts);

B = G(:,I(1:noPts)) - repmat(G(:,i),1,noPts);

for j = 1:noPts

S(:,:,j) = (G(:,I(j))-G(:,i)-r*dt)*(G(:,I(j))-G(:,i)-r*dt)’;

dist(j,1) = norm(G(:,I(j))-(G(:,i)+r*dt));

end

l = 1;

for j = 1:NDIMS

for k = 1:NDIMS

C(l,:) = S(k,j,:);

l = l+1;

end

end

a = 1;

18

b = (r - 0.5*diag(sigma)) * dt;

c = reshape(sigma,NDIMS*NDIMS,1)*dt;

AA = [];

bb = [];

Aeq = [A; B; C];

beq = [a; b; c];

LB = zeros(noPts,1);

UB = [];

sdist = sort(dist);

for j = 1:noPts

f(j,1) = find(sdist == dist(j));

end

f = f.^3;

pij = linprog(f,AA,bb,Aeq,beq,LB,UB);

P(i,I(1:noPts)) = pij;

if(sum(pij) > 1.0000001)

P(i,:) = 0.0; % absorbing bc for grid points that give rise to

% infeasible optimization problem

P(i,i) = 1.0;

end

end

% Saving the matrix P

save transmatrix P

--

19

